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Abstract: In recent years, there has been significant interest in the analysis and classification of brain 

dis-orders using electroencephalography (EEG). We presented machine learning and deep learning 

(DL) frameworks that integrate an EEG-based brain network with various DL models to diagnose 

attention deficit hyperactivity disorder (ADHD). By incorporating an objective biomarker into the 

diagnostic process, the accuracy and effectiveness of diagnosis could be enhanced. We used public 

EEG datasets from 61 ADHD youngsters and 60 normally developing children. The raw EEG data 

underwent preprocessing, including the application of filters in clinically relevant frequency bands and 

notch filters. From the preprocessed EEG segments, statistical features (e.g., standard deviation, 

kurtosis) and spectral features (e.g., entropy) were extracted. Principal component analysis (PCA) and 

chi-square with PCA were used as feature selection methods to obtain the most useful features and 

keep them. The machine learning models achieved the highest accuracy result of 94.86% by utilizing 

support vector machines (SVM) with PCA features. Furthermore, integrating models combining a 

convolutional neural network (CNN) with bidirectional long short-term memory (BiLSTM) networks, 

and gated recurrent unit-Transformer (GRU-Transformer block) with Chi-square and PCA features 

achieved accuracies of 94.50% and 95.59%, respectively. The suggested framework demonstrated a 

wide range of applicability in addressing the identification of ADHD. To evaluate the performance of 

the proposed models, comparisons were made with existing models, and the proposed system exhibited 

superior performance. We enhanced EEG-based analysis and categorization of ADHD by 
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demonstrating the capabilities of advanced artificial intelligence models in enhancing diagnostic 

accuracy and efficacy. 

Keywords: deep learning; machine learning; attention deficit hyperactivity disorder; 

electroencephalogram 
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1. Introduction 

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental 

disorders, estimated to affect 5–7% of children worldwide [1]. Impaired functioning is characterized 

by major symptoms such as inattention, hyperactivity, impulsivity, and emotional dysregulation. A 

youngster with this illness also has trouble regulating their impulses and focusing on a single activity 

at a time. The timely and accurate diagnosis of ADHD is critical for early intervention and treatment 

access, which can improve long-term outcomes [2]. However, diagnosis remains challenging, often 

based on subjective behavioral observations due to the lack of reliable biomarkers [3]. Emerging 

research has sought to identify neurophysiological features that could serve as objective indicators of 

ADHD pathology. Electroencephalography (EEG) is a non-invasive technique that directly measures 

electrical brain activity and has shown promise for probing neural dysfunction in ADHD [4]. Prior 

studies have reported EEG abnormalities in ADHD children, including altered theta/beta ratio [5], 

reduced P300 event-related potential, and EEG power differences [6]. Advanced analytical approaches, 

such as machine learning applied to EEG data, may enable robust classification of ADHD. 

The significances of a delayed diagnosis and treatment for ADHD may have detrimental effects on 

individuals, potentially leading to the development of more extensive mental health disorders, difficulties 

in interpersonal relationships and work, engagement in criminal behaviors, and the abuse of substances. 

The detrimental consequences of untreated ADHD have been extensively reported, exhibiting poor 

impacts on scholastic achievements [7], social interactions [8], occupational prospects [9], and overall 

mortality rates [10]. 

The use of ML approaches for the diagnosis of ADHD in individuals aged 17 years and above is 

a contemporary strategy for addressing this particular concern. Knowledge-based systems are 

frequently employed in medical environments where there is a substantial need for interpretability. 

These systems strive to explicitly represent knowledge by utilizing tools such as production or if-then 

rules. This enables the system to engage in reasoning processes to arrive at conclusions and offer 

explanations of its rationale to the user [11]. A hybrid approach was employed to leverage the 

advantages of machine learning-based methodologies while maintaining the interpretability of 

knowledge-based systems [12]. This approach integrates patterns derived from machine-learning 

algorithms with the expertise provided by clinicians, resulting in a unified framework that optimally 

combines both approaches.  

1.1. Contribution 

ADHD is a complex disorder characterized by a diverse array of symptoms, as mentioned 

previously. Timely intervention and accurate identification offer the potential to modify neural 

connections and enhance symptomatology. However, due to the multifaceted nature of ADHD, the 

presence of co-occurring disorders, and a global shortage of diagnostic professionals, the identification 
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of ADHD is frequently delayed. Therefore, it is crucial to explore alternative approaches to enhance 

the effectiveness of early detection, such as leveraging deep learning techniques. These techniques 

have the potential to augment existing diagnostic methods and contribute to more efficient and timely 

identification of ADHD. 

This system aims to automate ADHD classification using EEG. The method employs neural 

signal analysis to discriminate ADHD from typically developing children through rigorous automated 

classification of ADHD. The successful implementation of this framework has the potential to 

significantly aid clinical diagnosis and facilitate early access to treatment for individuals with ADHD. 

Furthermore, this work contributes to the ongoing efforts to enhance ADHD diagnostics and deepen 

our understanding of the underlying neural mechanisms of the disorder. To address the research gaps 

identified in previous investigations, an integrated system was devised, combining a CNN with BiLSTM 

networks, along with a gated recurrent unit-transformer (GRU-Transformer block). This integrated 

system aims to improve upon existing approaches and advance the field of ADHD classification. 

By utilizing deep learning techniques and developing an EEG-based framework, we strive to 

enhance the accuracy and efficiency of ADHD identification, ultimately benefiting individuals with 

ADHD and the clinical community. 

1.2. Background of research  

The National Survey on Children's Health (NSCH) during 2016–2017 found that 6,630 children 

(ranging in age from 3 to 17) were officially diagnosed with ADHD. It is worth noting that children, 

on average, are diagnosed with ADHD at the age of 12.4 years. In the realm of research, scientists 

have employed diverse machine-learning classifiers [13–18] to identify children who might be at risk 

of developing ADHD.  

Uluyagmur-Ozturk and colleagues [19] conducted a study investigating the relationship between 

psychological health and diagnoses of autism spectrum disorder (ASD) and ADHD among young 

people in Turkey. The study included 61 participants sourced from the Marmara University Medical 

Center. This diverse group consisted of 30 children diagnosed with ADHD, 18 classified with ASD, 

and 13 typically developing children, with ages ranging from 9.22 to 10.50 years. To classify 

individuals into the respective groups, the researchers employed five machine-learning approaches: 

decision tree (DT), random forest (RF), SVM, k-nearest neighbor (KNN), and AdaBoost (AB) 

algorithms. Remarkably, the AB algorithm achieved an accuracy of 80%, demonstrating its 

effectiveness in classification tasks. 

Slobodin et al. [20] conducted a study utilizing a continuous performance test (CPT) to examine 

signs of ADHD in children and adolescents. The study involved 458 participants aged 6 to 12 years, 

who were divided into different age groups. The mean age of the group consisting of children and 

adolescents was 8.7 years, with a standard deviation of 1.8 years. Among the children, 46.51% were 

diagnosed with ADHD. Interestingly, statistical analysis revealed no significant age difference 

between individuals with ADHD and those without the condition (p-value = 0.94). Various machine 

learning classifiers were employed to generate predictions for ADHD. The training set, which 

constituted 60% of the data, was used to train the classifiers, while the remaining 40% served as a test 

set to evaluate classifier performance. The machine learning-based classifiers demonstrated impressive 

levels of accuracy (87.0%), sensitivity (89.0%), and specificity (84.0%).  

Morrow et al. [21] conducted a research study focusing on examining the impact of therapy on 

children and adolescents diagnosed with ADHD. The study employed four distinct machine learning 

classifiers to identify relevant characteristics of children seeking medical treatment for ADHD. 
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Specifically, Classification and Regression Trees (CART), Logistic Regression (LR), Endpoint 

Detection and Response (EDR), and Deep Net classifiers were utilized. Notably, the Deep Net-based 

classifier demonstrated superior performance with a robust area under the curve (AUC) value of 0.72, 

outperforming CART, EDR, and LR classifiers.  

The utilization of EEG data as a diagnostic tool for ADHD remains a topic of debate, primarily 

due to the lack of standardized criteria for its usage and interpretation. Moghaddari et al. [22] addressed 

this issue by implementing a CNN model to diagnose ADHD in children based on EEG readings. A 

total of 61 participants took part in the study, with 31 diagnosed with ADHD and 30 considered to be 

typically developing. Prior to analysis, the collected EEG signals underwent a preprocessing step to 

eliminate unwanted artifacts and background noise. Subsequently, the EEG data was transformed into 

RGB pictures using a conversion process, which was then processed by a 13-layer CNN. The model's 

performance was evaluated using a 5-fold cross-validation procedure, resulting in an impressive 

average accuracy of 99.06% for the model validation. 

Tosun et al. [23] employed LSTM, power spectral density (PSD), and spectral entropy (SE). The 

suggested method for conducting research was evaluated using an 80:20 hold-out validation strategy, 

which resulted in an accuracy of 92.15%.  

In their study, Khoshnoud et al. [24] investigated a group of young individuals diagnosed with 

ADHD, employing nonlinear EEG analytic techniques for their analysis. The researchers utilized two 

measures, namely the maximum value of the Lyapunov exponent (LLE) and the approximation 

entropy (ApEn), to evaluate the nonlinear characteristics of the EEG signals. To facilitate the 

evaluation process, a probabilistic neural network (PNN) was employed, leading to a classification 

accuracy of 87.5%.  

Chen et al. [25] undertook the development of a deep learning model with the purpose of 

accurately identifying individuals with ADHD within the pediatric population. The study involved the 

translation of raw EEG data into visual representations, which were subsequently inputted into a CNN 

model. The dataset utilized in their work consisted of EEG recordings collected from a representative 

group of children and adolescents. Specifically, the dataset included a total of 102 participants, 

comprising 51 typically developing children and 51 children diagnosed with ADHD. Notably, the deep 

learning model achieved an impressive accuracy rate of 94.67%.  

Tenev et al. [26] presented a technique to speed up the process of detecting and classifying 

individuals who have been diagnosed with ADHD. Their study included 117 individuals: 67 diagnosed 

with ADHD, and 50 healthy controls. The EEG signals of the participants were analyzed. To conduct 

the data analysis, they made use of SVM in addition to a voting mechanism. The suggested approach 

had a significant overall effectiveness of 82.3%. 

Saini et al. [27] used EEG data for testing ML models for predicting ADHD. The featured 

selection in the given model was done using PCA approach, while the data classification was done 

using KNN. With EEG data collected from 77 ADHD children and 80 typically developing children.  

Dubreuil-Vall et al. [28] conducted a study involving EEG data collection from a group of 40 

volunteers, including 20 individuals diagnosed with ADHD and 20 healthy controls. The study aimed 

to develop a procedure for identifying ADHD using EEG data. The researchers utilized spectrogram 

visuals generated from the EEG data as inputs for a CNN model. The findings of the study revealed 

an accuracy of 88% for data classification.  

Tor et al. [29] used a mix of nonlinear features, empirical model decomposition (EMD), and 

discrete wavelet transform (DWT) decomposition methods for predicting ADHD. They analyzed EEG 

data obtained from a group of 123 children and teenagers. A subgroup representing 45% exhibited 
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symptoms of ADHD. By leveraging the aforementioned analytical approaches, the researchers aimed 

to differentiate and classify individuals based on their specific diagnoses.  

In a recent study conducted by Loh et al. [30], a comprehensive analysis was undertaken to 

explore and compare various computerized diagnostic approaches for ADHD. The researchers delved 

into published research encompassing these different techniques, aiming to gain a thorough 

understanding of their strengths and limitations. By conducting a comparative analysis, the study shed 

light on the distinctions and similarities among the evaluated approaches, providing valuable insights 

into the advancements made in the field of computerized ADHD.  

The aforementioned techniques were devised to automate the diagnosis of ADHD via the analysis 

of physiological data and photographic documentation. Table 1 presents a summary of the previous 

study focusing on the detection of ADHD. 

Table 1. Previous studies for detecting ADHD. 

Author /Year Models Dataset size Accuracy % 

Christiansen et al. (2020) [31] Decision tree 385 samples 80.0% 

Sato et al. (2012) [32] 

Logistic 

regression 

(LR) 

200 samples 
67.0% 

cross validation 

Tan et al. (2017) [33] SVM 200 samples 
68.6% 

cross validation 

Khan et al. (2021) [34] SVM 659 samples 
81.0% 

training and testing 

Sun et al. (2020) [35] SVM 781 samples 
85.3% 

LOOCV 

Peng et al. (2013) [36] ELM 153 samples 
90.2% 

LOOCV 

Vaidya et al. (2019) [37] SVM 
1012 samples 

(ADHD, and ASD)   

88.9% 

training and testing 

Tang et al. (2020) [38] DT 152 samples 
97.6% 

LOOCV 

Chen et al. (2019) [39] CNN 101 samples 
94.0% 

cross-validation 

Kim et al. (2021) [40] SVM 79 samples 
81.0% 

LOOCV 

2. Materials and methods 

We implement a rigorous methodology pipeline to classify ADHD from healthy and controls 

using EEG data. EEG provides a direct measure of cortical activity and has shown utility as a 

biomarker for various neurological and psychiatric conditions. 

The proposed framework includes critical steps for robust EEG-based classification, including 

preprocessing, feature extraction, feature selection, classifier optimization, and performance 

evaluation. Preprocessing involves filtering and artifact removal to isolate neural signals. Informative 

features that capture distinguishing characteristics are then extracted from the clean EEG data, as 

shown in Figure 1. Feature selection serves to eliminate redundant variables and improve 
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generalizability. The chosen features were utilized to train a machine learning classifier with the 

objective of accurately classifying subjects as either ADHD or healthy. 

 

Figure 1. The proposed methodology for ADHD detection. 

2.1. EEG Dataset  

The EEG data employed in this study were sourced from a standard dataset, which consisted of 

61 children diagnosed with ADHD and 60 typically developing controls. Further details regarding the 

dataset can be found in this section. 

The dataset, collected by Nasrabadi, A.M., is accessible online at the following link: "https://ieee-

dataport.org/open-access/eeg-data-adhd-control-children" (accessed on 25 August 2023).  

2.1.1. Participants 

The dataset consisted of 61 children diagnosed with ADHD and 60 typically developing children. 

Additional details regarding the dataset can be found in Table 2. The ADHD cohort was recruited from 

referrals to the psychiatric clinic. The diagnosis of ADHD was made by an experienced child and 

adolescent psychiatrist, following the DSM-IV criteria. The control group, comprising 50 participants 

from an all-boys school and 10 from an all-girls school in Tehran, was carefully selected. A psychiatrist 

evaluated the control group to ensure the absence of any neurological or psychiatric disorders [41]. 

Table 2. The participants’ details. 

Group Number of Participants Gender Age (years) 

ADHD 61 48 Male, 13 Female 9.62 ± 1.75 

Control 60 50 Male, 10 Female 9.85 ± 1.77 

https://ieee-dataport.org/open-access/eeg-data-adhd-control-children
https://ieee-dataport.org/open-access/eeg-data-adhd-control-children
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2.1.2. EEG data acquisition 

The collection of EEG signals was performed utilizing a 19-channel digital acquisition equipment 

known as the SD-C24. The signals were acquired at a sampling rate of 128 Hz, with a resolution of 16 

bits. Recording was conducted based on a visual attention task comprising 20 images with varying 

numbers of characters (5–16 per image). The images were sufficiently large and randomly distributed 

to elicit sustained visual attention. Each image was displayed immediately after the participant’s 

response to maintain continuous visual stimuli. The task had performance penalties associated with 

performance. The globally established 10–20 technique was used to put the 19 scalp EEG electrodes 

[41]. This system ensures standardized coverage of all regions of the brain. The anterior region 

electrodes included Fp1, Fp2, F7, F3, Fz, F4, and F8. The posterior region was covered by electrodes 

T5, P3, Pz, P4, T6, O1, and O2. The central region is comprised of C3 and T3 in the left hemisphere 

and C4 and T4 in the right hemisphere. Finally, reference electrodes A1 and A2 were placed on the 

left and right earlobes, respectively, as shown in Figure 2. This spatial arrangement and color coding 

allowed for a clear visualization of the electrode positions across the scalp and their correspondence 

to the underlying cortical regions. The 10–20 placement optimized the recording of brain electrical 

activity relevant for analysis and classification. 

The EEG signal activity of both the Control and ADHD groups was visualized, with each subplot 

depicting 5 seconds of data from three randomly chosen electrodes: Fp1, Cz, and Pz. Figure 3 presents 

these plots, showcasing the temporal variation in signal amplitude for the selected electrodes. The left 

column corresponds to the Control group, while the right column corresponds to the ADHD group. 

Figure 4 displays the visualization of raw EEG signals for a subset of channels (Fp1, Fp2, C3, C4, 

O1, and O2). The EEG time series data is presented over a 10-second window, providing a visual 

representation of the recorded EEG activity. 

 

Figure 2. The positions of earlobes of the 10–20 system. 
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Figure 3. EEG signal activity for control and ADHD groups. 

 

Figure 4. EEG time series data over 10-second window. 

Short-Time Fourier Transform (STFT) time-frequency analysis was performed on selected EEG 

channels. STFT analysis in ADHD research has several benefits. First, it has the capability to 

investigate non-stationary signals in both the temporal and frequency domains. This unique approach 
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allows for the detection of transient events and facilitates the understanding of changes in frequency 

bands over time, which is crucial for gaining insights into the neurological aspects of ADHD. Second, 

the STFT enables the examination of event-related potentials, spectral analysis, and abnormality 

detection. These capabilities are valuable in differentiating ADHD patients from individuals with 

typical development. The fine-grained time-frequency resolution of the STFT is particularly valuable, 

as it enhances the localization of neuronal events. This makes it useful for tasks such as artifact removal 

and the development of sophisticated analysis techniques like machine learning models for ADHD 

classification. Overall, the STFT excels in managing complex EEG data and provides comprehensive 

insights into the brain pathways associated with ADHD. It is preferred over other techniques such as 

the Wavelet Transform and Multitaper in ADHD research due to its balanced time-frequency 

resolution and easy interpretability. The STFT's uniform analytic grid is well-suited for capturing the 

temporal dynamics of EEG signals, which is essential for investigating the neurological features of 

ADHD. Furthermore, the STFT is recommended for its computing efficiency and the clarity it offers 

in time-frequency analysis. These qualities make it a practical and efficient solution for the 

sophisticated examination of EEG data in ADHD research. This analysis generates spectrograms for 

each channel, providing insights into the dynamics of frequency content over time. Figure 5 illustrates 

the STFT representations of EEG channels. 

 

Figure 5. STFT approach. 
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The spectrograms obtained from the analysis depict the power distribution of each frequency band 

across different time points, enabling the identification of EEG patterns associated with cognitive or 

neurological events. For instance, fluctuations in the alpha band (8–13 Hz) may indicate a state of 

relaxation, while alterations in the beta band (13–30 Hz) could be indicative of active thinking or 

focused attention. 

2.2. Preprocessing 

We implement a rigorous data preprocessing and feature engineering pipeline to develop a robust 

EEG-based diagnostic system for ADHD. Raw EEG signals were filtered to isolate clinically relevant 

frequency bands, including delta, theta, alpha, and beta using fourth-order Butterworth band pass filters. 

Notch filters were also applied to eliminate power line interference. 

Filtering enabled the extraction of band-specific features corresponding to neuronal oscillations 

associated with ADHD pathophysiology. ADHD neuro biomarkers include heightened theta and lower 

beta activity. Preserving frequency-specific information is critical for modeling the complex spectral 

signatures of ADHD versus healthy brains. 

2.2.1. Feature extraction approach  

The preprocessed EEG signals were divided into segments of 2-second duration using a sliding 

window technique with an overlap of 50% between consecutive windows. This segmentation allows 

for the extraction of discriminative features localized over time. Descriptive features capturing the 

characteristics of the signal in both the time and frequency domains were extracted for each 2-second 

window. Statistical features based on the raw signal values in the time domain were calculated to 

capture variability, distribution, and complexity. Measures such as standard deviation, skewness, 

kurtosis, and Hjorth parameters represent the variance, symmetry, tailed ness, and complexity of the 

distribution, respectively. This combination of statistical and spectral features provides a 

multidimensional profile, encapsulating both time-based morphology and frequency-based brain 

activity relevant to EEG analysis. The values calculated on short windows enable the tracking of 

dynamic fluctuations over time. 

2.2.2. Feature selection approach  

Robust feature selection was critical for extracting the most discriminative biomarkers from the 

complex, multidimensional EEG data and for enhancing the performance of our machine- and deep-

learning models. A two-stage feature-screening pipeline, incorporating both filter-based and wrapper-

based techniques to identify optimal ADHD-relevant features, was implemented. 

In the first stage, PCA was applied as a filter-based approach to reduce dimensionality and derive 

a lower-dimensional feature subspace that captured 95% of the variance. By eliminating redundant 

and irrelevant features, PCA enhanced the signal-to-noise ratio in the input data for more efficient 

modeling. 

A wrapper-based feature selector, using Chi-square testing to refine the PCA-filtered features, 

was subsequently implemented. Chi-square assessed the correlation between each feature and the 

ADHD/control classes to rank features by discriminative power. Only the top-ranked Chi-square 

features, that exhibited the strongest diagnostic relevance, were retained. 
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This two-step filtering approach combines the power of a supervised wrapper technique (Chi-

square) with an unsupervised filter method (PCA) to extract both generalized and class-specific 

predictive information from EEG data. The research experiments demonstrated significant 

performance gains from coupling Chi-square and PCA, rather than using either in isolation. 

2.2.3. Data splitting  

The final dataset was split into training and testing sets using a ratio of 80:20. While 80% of the 

data was allocated to the training set, which is used to fit the machine-learning models, the remaining 

20% was assigned to the testing set, which provided an unbiased evaluation of the model’s 

performance on new unseen data. 

2.2.4. Handling imbalanced class 

In the original dataset, the ADHD class constituted the majority class, with significantly more 

samples than the control group. This imbalance could lead the learning algorithms to focus primarily 

on the ADHD class and compromise the accuracy of the control group. Figure 6 shows class 

distribution of the original dataset. 

To mitigate this issue, the Synthetic Minority Oversampling Technique (SMOTE) algorithm was 

applied to address the class imbalance in the training data after data preprocessing. SMOTE approach 

generates new synthetic samples from the minority class (control group) to improve its representation. 

Oversampling occurs by providing synthetic instances along line segments to nearest neighbors for 

each minority class sample [8]. 

SMOTE oversampling was implemented on the training data to generate new synthetic control 

samples. This achieved a more balanced class distribution between the ADHD and control groups in 

the training set. Balanced representation will enable the machine- and deep-learning models to learn 

the nuances of both classes more effectively. The testing set was kept untouched to provide an unbiased 

estimate of real-world performance. The balanced training data is expected to build more robust 

classifiers with equal emphasis on each class and improved sensitivity. This approach ensures a 

meticulous and unbiased evaluation of the model’s capabilities, promising reliable performance 

assessments in real-world scenarios. 

We found a class imbalance in the original dataset, with ADHD and control group samples 

distributed unevenly. Each trial lasted varying amounts of time depending on how long each youngster 

took to count the animals and enter their response.  The 50 seconds were the shortest trial for a control 

and the longest was 285 seconds for an ADHD patient. This bias had to be addressed to enable 

thorough model training due to this imbalance. To address the imbalance in the training data, SMOTE 

was carefully applied to the control class, which was underrepresented. The SMOTE method finds 

each minority class sample's k nearest neighbors based on feature space closeness. Then, along the 

chosen neighbor's line segment that connects the minority sample, synthetic samples are created. This 

will be carried out until the representation of minority classes achieves the necessary level of 

domination. To prevent bias in the test data, SMOTE was exclusively applied to the training data. To 

evaluate the model's generalizability to real-world unbalanced circumstances, the untouched test subset 

preserved the fundamental class imbalance. This imbalance gave an honest assessment of the model's 

capacity to manage dataset issues. SMOTE approach was applied to balance just the EEG training 

dataset allowed robust model tweaking while leaving the EEG test dataset.  
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Figure 6. Class distribution of the original dataset. 

2.3. Proposed model  

The machine-learning algorithms, including naive Bayes, support vector machines, ensemble 

methods, and deep neural networks, such as convolutional and gated recurrent units, to EEG biomarker 

datasets were applied. 

2.3.1. Machine learning  

Machine-learning algorithms build mathematical models from sample data, known as training 

data, to make predictions or decisions without being specifically coded for the task [42]. Machine-

learning approaches are commonly categorized as supervised, unsupervised, or reinforcement learning 

based on the nature of the problem and data labeling. In supervised learning, the training data comprise 

examples with known output labels, and the algorithms learn to map inputs to outputs [43].  

A range of standard supervised learning algorithms were implemented for comparative 

benchmarking on the ADHD classification task. The models encompass both linear classifiers, such 

as probabilistic models including naive Bayes, support vector machines, and ensemble methods like 

random forest, gradient boosting, and model stacking. Naive Bayes provides a probabilistic framework 

for classification, assuming feature independence to estimate class probabilities via Bayes’ theorem 

[44]. Support vector machines are commonly used for classification and regression tasks [45]. The 

goal of SVMs is to find the optimal separating hyperplane that maximizes the margin between classes 

in a high-dimensional space. SVMs do not use all training points to define the hyperplane; rather, they 

select a subset of points near the class boundaries called support vectors. SVMs are the critical 

elements that determine the hyperplane and have the greatest influence. 

A stacking ensemble was implemented by training a high-level Cat Boost classifier on the combined 

predictions from base random forest and Light Gradient Boosting Machines (GBM) models to improve 

predictive performance. These diverse algorithms provide complementary modeling strengths for 

assessing a comprehensive set of approaches for robust ADHD classification from EEG data. 
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2.3.2. Deep learning algorithm  

Deep learning constitutes a subfield of machine learning focused on architecting artificial neural 

networks with multiple layers to automatically learn representations and extract hierarchical features 

from data [46]. This facilitates the development of highly capable predictive models for complex tasks, 

including medical diagnoses.  

In this study, CNN architecture used 1D convolutions to learn a hierarchical feature representation 

directly from the raw EEG signals and trained end-to-end on the labeled data for the diagnostic 

classification task. 

The model comprises convolutional layers to automatically learn spatial feature representations 

interspersed with max pooling, dropout, and fully connected layers [47,48,49,50]. The input EEG 

signals are input into 1D convolutions. Temporal correlations were identified using two consecutive 

Conv1D layers with 64 filters and a kernel size of 3. Rectified linear unit (ReLU) activation was 

employed for nonlinear transformations. To improve generalization, dropout with a rate of 0.5 was 

implemented between convolutional blocks. Max pooling layers reduced dimensionality while 

retaining significant features. The convolutional feature maps were flattened into a 1D vector and 

connected to a series of dense layers for high-level reasoning, with a progressively decreasing number 

of units. ReLU activation was again applied to nonlinear combinations. Two nodes in the final Softmax 

output layer allowed binary categorization of ADHD and control groups. Figure 7 depicts model 

architecture. 

 

Figure 7. CNN-BiLSTM architecture. 

The convolutional-LSTM path also applies 1D convolutions to obtain local features. A hundred 

twenty eight filters in the Conv1D layer were used. This is followed by max pooling and a bidirectional 

LSTM with 64 units to learn temporal dependencies in both directions. The LSTM output is processed 

by a 1024-unit dense layer and dropout before being concatenated with the other paths' outputs. 

C= ∑ ∑ 𝐼𝑖𝑗𝐹𝑖𝑗
𝑗
1

𝑖
1          (1) 

Within the context of CNNs, the symbol F denotes a convolution kernel or filter, while i, and j 

pertain to the specific rows and columns of an image I, respectively. The input picture is convolved 
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with the kernel, yielding a novel two-dimensional output. The procedure involves decomposing the 

image into individual neurons, followed by flattening these neurons along the y and z dimensions. 

Each layer inside the network is equipped with a set of x filters that are designed to detect and identify 

traits. Feature maps of size X are generated by Layer L, and these feature maps are annotated 

appropriately. 

𝐶𝑖
𝐿=𝐵𝑖

𝐿+∑ 𝐹𝑖,𝑗
𝐿𝑥(𝐿−1)

𝑗=1 *𝐶𝑗
(𝐿−1)

        (2) 

The term 𝐵𝑖
𝐿denotes the bias matrix, whereas 𝐹𝑖,𝑗

𝐿  signifies the filter that connects the jth feature 

map inside the layer. 

𝑓𝑡=𝜎 (𝑊𝑒𝑓𝑋𝑡+ 𝑊𝑒𝑓ℎ𝑡−1+𝑊𝑐𝑓𝐶𝑡−1+𝑈𝑓)        (3) 

𝑖𝑡=𝜎 (𝑊𝑥𝑖𝑋𝑡+ 𝑊ℎ𝑖ℎ𝑡−1+𝑊𝑐𝑖𝐶𝑡−1+𝑈𝑖)        (4) 

𝐶𝑡=𝜎 (𝑓𝑡𝑐𝑡−1+ 𝑖𝑡 tanh( 𝑊𝑥𝑐𝑋𝑡+ 𝑊ℎ𝑐 ℎ𝑡−1 + 𝑈)        (5) 

𝑜𝑡=𝜎 (𝑊𝑥𝑜𝑋𝑡+ 𝑊ℎ𝑜ℎ𝑡−1+𝑊𝑐𝑜𝐶𝑡−1+𝑈𝑜),         (6) 

ℎ𝑡=𝑂𝑡 × tanh (𝐶𝑡 )        (7) 

The equations above are often used in the sequential forward and sequential backward procedures. 

They denote the equations that encapsulate the BiLSTM model. The BiLSTM network may be 

conceptualized as a gated cell that assesses input data and determines its retention depending on its 

significance or weight. The BiLSTM model is composed of three fundamental components: The input 

gate, the forget gate, and the output gate. The forget gate, denoted as 𝑓𝑡, is responsible for determining 

the states that should be retained in memory or discarded. The input gate 𝑖𝑡  adjusts the value by 

considering the incoming signals. The output gate, denoted as 𝑜𝑡, facilitates the transmission of the 

cell state to adjacent neurons. The architecture comprises of a logistic layer and an additional layer 

responsible for generating a novel vector that is then combined with the existing state. In the context 

of a recurrent neural network (RNN), the input 𝑋𝑡 is processed by the hidden layer using the weight 

matrix W, resulting in the generation of the final output yt. The LSTM model incorporates a memory 

cell denoted as ℎ𝑡, which serves as a pivotal component regulated by three distinct gates. 

2.3.3. GRU-Transformer approach  

The model implements GRU layers for sequence modeling [51]. The input layer is designed to 

accommodate the time series EEG feature matrix, which consists of a single channel. Two sequential 

GRU layers with 1,024 and 128 units were stacked to learn temporal relationships. The second GRU 

layer returns the full sequence for further modeling. GRUs contain gating units that modulate 

information flow, enabling them to better capture long-range dependencies compared to vanilla RNNs. 

The final Softmax output layer produced normalized predicted probabilities for the two target classes: 

ADHD and the healthy control. The model’s architecture is shown in Figure 8. 

𝜇𝑡 = 𝜎(𝑉𝜇𝑥𝑡 + 𝑊𝜇𝑜𝑡−1 + 𝑏𝜇)       (8) 

𝑟𝑡 = 𝜎(𝑉𝑟𝑥𝑡 + 𝑊𝑟𝑜𝑡−1 + 𝑏𝜇)       (9) 

𝑖𝑡 = 𝑡𝑎𝑛ℎ(𝑉𝑜𝑥𝑡 + 𝑊𝑜(𝑟𝑡 ⊙ 𝑜𝑡−1) + 𝑏0)      (10) 

𝑜𝑡 = 𝜎(𝜇𝑡 ⊙ 𝑜𝑡−1 (1 − 𝜇𝑡)  ⊙ 𝑖𝑡)      (11) 
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The symbol 𝑥𝑡 denotes the input, 𝑜𝑡 represents the output, 𝜇𝑡 signifies the output of the update 

gate, 𝑟𝑡 denotes the output of the reset gate, and ⊙ denotes the Hadamard product. The parameters or 

weight matrices are denoted as V, W, and b. 

The GRU encoder and Transformer path uses a recurrent GRU layer to produce embeddings of 

the input sequence. Thirty-two GRU units were applied to encode 32-dimensional vectors at each 

timestep. Multi-head self-attention with 2 heads is then applied, which allows the GRU embeddings 

to attend to each other based on learned relationships. Residual connections and layer normalization 

stabilize the training. The attention outputs are flattened to a 1D vector. 

 

Figure 8. The architecture of the GRU-Transformer block. 

2.3.4. Proposed system  

A novel deep neural network architecture that combines convolutional, recurrent, and attention-

based models for improved sequence classification performance has been developed. The core of the 

model is the integration of the CNN, CNN-LSTM, and GRU-Transformer blocks through 

concatenation of their outputs. This merging allows the model to leverage the diverse representations 

learned by each path in a unified architecture. The concatenated feature vector encapsulates local 

spatial-temporal correlations from the CNN, long-term dependencies from the LSTM, and global 

relationships from the Transformer's attention mechanism. This robust combined representation is fed 

into additional dense layers for final classification. A 1024-unit Dense layer learns nonlinear 

combinations of the concatenated features. Dropout regularization prevents overfitting. The final 

Softmax output layer predicts class probabilities. By concatenating the complementary outputs of the 

CNN, RNN, and Transformer paths, the developed model achieves robust sequence classification. The 

integrated architecture leverages the strengths of each block-convolutional features, recurrence, and 

attention - to represent the input data in multiple ways for improved accuracy. The goal of this multi-

path, and concatenated design is to enhance classification performance compared to single-path models. 

By merging diverse spatial, temporal, and attention-based representations, the model can capture 

nuances in the data that might be missed by CNN, RNN, or Transformer architectures alone. Figure 9 

displays the integrating model, and Table 3 shows the parameters of integrating models. 
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Figure 9. The proposed integrating model. 

Table 3. Parameters of integrating model. 

Model block Layer Parameters 

CNN 

Conv1D 1024 filters, kernel size 3 

BatchNorm - 

MaxPooling1D Pool size 2 

Flatten - 

Dense 128 units 

Batch Norm - 

Dropout Rate 0.5 

Dense 64 units 

CNN-LSTM 

Conv1D 128 filters, kernel size 3 

Batch Norm - 

MaxPooling1D Pool size 2 

Bidirectional LSTM 64 units 

Dense 1024 units 

Dropout Rate 0.5 

GRU-

Transformer 

GRU 32 units 

Multi-Head Attention 2 heads 

Add - 

Layer Norm - 

Flatten - 

Model Integration Concatenate - 

Output Layers 

Dense 1024 units 

Dropout Rate 0.5 

Dense 2 units, softmax 
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2.4. Experimental 

In this section, we delineate the experimental framework used to develop and validate the 

developed EEG-based ADHD classification models. Detailed results are presented and analyzed to 

benchmark the efficacy of the proposed approach against state-of-the-art methods. The rigorous 

experimental pipeline provides critical insights into the real-world viability of using EEG data and 

machine learning for enhanced ADHD screening. The developed framework could inform best 

practices for applying these techniques to improve the diagnosis of neurological conditions. 

2.4.1. System setup  

The experiments were conducted using a laptop workstation with a Core i7 CPU, 8 GB of RAM. 

This provided sufficient computing capabilities for efficient model training and evaluation. Models 

were implemented using TensorFlow [15] and Scikit-learn, an open-source framework for model’s 

designing, training, and testing. TensorFlow uses GPU acceleration, which significantly expedites 

neural network computations compared to CPU-only environments. 

2.4.2. Evaluation metrics 

Assessing the performance of models is crucial to comprehending their proficiency [16]. Several 

evaluation metrics exist, such as accuracy, sensitivity, precision, recall, F1-score, receiver operating 

characteristic (ROC) curve, and confusion matrix. Each metric provides unique insights into the 

strengths and weaknesses of the model. Thorough evaluation using diverse metrics offers a 

comprehensive portrayal of model efficacy. 

2.4.3. Confusion matrix  

The confusion matrix constitutes an essential evaluation tool for binary classification systems by 

summarizing the predictive performance across the test dataset. Its cardinal components encompass 

True Positives (TP): ADHD cases correctly classified by the model as positive; False Positives (FP): 

Control cases incorrectly predicted as ADHD (positive); True Negatives (TN): Control cases properly 

classified by the model as negative; and False Negatives (FN): ADHD cases incorrectly classified as 

controls (negative). By tabulating the true and false, positive ADHD, and negative control predictions, 

the confusion matrix facilitates the quantitative assessment of the classifier’s discrimination 

proficiency between ADHD and control classes. It illuminates critical errors through false positives 

(controls predicted as ADHD) and false negatives (ADHD predicted as controls) to enable the 

identification of learning deficiencies. 

2.4.4. Accuracy 

Accuracy is calculated as the ratio of correct predictions to total predictions, as shown in Eq (12). 

It serves as a commonly used metric for assessing the performance of models. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 × 100    (12) 



10597 

AIMS Mathematics  Volume 9, Issue 5, 10580–10608. 

2.4.5. Sensitivity  

Sensitivity is defined as the proportion of actual positives accurately detected as in Eq (13). It 

quantifies the rate of true positives in binary classification. It measures model proficiency in 

identifying positive cases (ADHD) without type II errors.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
    (13) 

2.4.6. F1-Score 

The F1-score is the harmonic mean of precision and recall. It synthesizes these metrics into a 

singular value, providing a balanced evaluation of model performance. A high F1-score indicates 

strong precision and recall, meaning few false positive and false negative predictions. Unlike accuracy 

alone, the F1-score offers a nuanced portrait of classification proficiency. Calculated via Eq (14), the 

F1-score furnishes crucial insights beyond accuracy. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  × 100    (14) 

2.4.7. Specificity 

Specificity measures a binary classifier’s ability to correctly identify negatives. It is quantified as 

the ratio of true negatives (TD) to total negatives. It evaluates model competence in avoiding false 

positives—negative instances mistakenly classified as positive. The specificity calculation was 

performed using Eq (15). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
     (15) 

2.4.8. Receiver operating characteristics 

The true positive rate (TPR) against false positive rate (FPR) ROC curve shows model 

discrimination abilities. The ROC curve shows the tradeoff between true and false positives as TPR 

measures proper identification and FPR measures negative misclassifications. This illuminates 

balanced model performance beyond accuracy. 

3. Results  

3.1. Machine learning classification results  

We evaluated three machine-learning classifiers—Gaussian naïve Bayes, SVM, and a stacking 

ensemble to improve the accuracy of ADHD diagnosis from EEG biomarkers. PCA was first utilized 

for feature selection, retaining 95% of the data variance. With the PCA-reduced features alone, the 

SVM model achieved the highest diagnostic performance, attaining 94.86% accuracy, 96.33% 

sensitivity, 93.02% specificity, 95.42% F1- score, and 98.71% AUC curve. These results demonstrate 

SVM’s robust capabilities for accurately categorizing both ADHD and non-ADHD cases based on 
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EEG data. Figure 10 shows the confusion matrix and ROC curve. Table 4 presents the SVM 

classification report. 

Supplementing Chi-square with PCA for more targeted, variance-focused feature selection 

further improved outcomes. SVM attained 92.8% accuracy, 94.3% sensitivity, 91.0% specificity, 93.6% 

F1-score, and 97.8% AUC using the combined PCA Chi-square feature set. This highlights the utility 

of coupling PCA and Chi-square for honing the most diagnostically relevant features from complex 

EEG biomarkers. Figure 11 shows the confusion matrix and ROC curves, while Table 5 presents the 

SVM classification report.  

 

Figure 10. The ROC curves and confusion matrix of SVM using PCA: (A) ROC, and (B) 

confusion metrics. 

 

Figure 11. ROC curves and confusion matrix of SVM using Chi-square with PCA: (A) 

ROC, and (B) confusion metrics. 
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Table 4. The classification report of the SVM using PCA. 

Class Name Precision% Recall% F1-Score% Support 

Control 95 93 94 1504 

ADHD 95 96 95 1881 

Accuracy   95 3385 

Macro Avg 95 95 95 3385 

Weighted Avg 95 95 95 3385 

Table 5. The classification report of the SVM using chi-square with PCA. 

Class Name Precision% Recall% F1-Score% Support 

Control 93 91 92 1504 

ADHD 93 94 94 1881 

Accuracy  93 3385 

Macro Avg 93 93 93 3385 

Weighted Avg 93 93 93 3385 

However, SVM remained the top individual classifier, indicating it is presently the most effective 

standalone machine learning technique for EEG-based ADHD detection when combined with Chi-

square and PCA feature selection. These results clearly demonstrate that machine learning, especially 

SVM architectures, can significantly enhance ADHD diagnostic accuracy compared to conventional 

methods (see Table 6). 

Table 6. Results of the machine-learning classification. 

Feature Selection 

Technique 
Model Name Accuracy% Sensitivity% Specificity% 

F1 

Score% 
AUC% 

PCA 

GausnaïveNaive 

Bayes 
71.7 81.4 59.6 76.2 78.8 

Stacking Classifier 83.6 87.4 78.1 85.3 90.6 

SVM 94.9 96.3 93.0 95.4 98.7 

Chi-Square with 

PCAnaïvesian Naive 

Bayes 

71.8 81.6 59.5 76.3 78.1 

 
Stacking Classifier 85.6 88.5 81.8 87.2 93.4 

SVM 92.8 94.3 91.0 93.6 97.8 

3.2. Results of integrating deep leaning with PCA  

This study assessed combined deep leaning, known as CNN, CNN-BiLSTM block, and GRU-

Transformer block, for the automated diagnosis of ADHD using neuroimaging biomarkers. Table 7 

presents the classification report of integrating deep leaning model with PCA feature selection. The 

PCA initially reduced feature dimensionality, retaining 95% of the data variance. Utilizing just PCA-

derived features, the integrating deep leaning attaining accuracy 95% accuracy, 95% recall, and 94% 

F1-score. This underscores the aptitude of integrating deep leaning for mining predictive ADHD 

patterns from neuroimaging data.  
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Table 7. Results of the proposed system with PCA. 

Class  Precision % Recall % F1-Score % Support 

Control  95.1 93.2 94.0 1504 

ADHD 94.2 96.3 95.1 1881 

Accuracy 95.0 

Wighted Average 95.1 95.2 94.0 3385 

Figure 12 shows accuracy of the training and testing of the integrating model with PCA. 

Throughout the training phase of the model, two significant metrics are often used to assess its 

performance: Training accuracy and validation accuracy. Moreover, the training and validation losses 

play a crucial role in assessing the model's learning progress. This investigation evaluated an instance 

where training accuracy increased from 75% to 99%. Concurrently, the validation accuracy started at 

55% and had a moderate rise reaching an estimated value of 95%. Moreover, there was a decrease in 

the accuracy loss throughout the testing phase, from 1.3 to 0.4. 

 

Figure 12. Training and testing perfomnce of the proposed integrating deep leaning system 

with PCA: (a) accuracy, (b) loss. 

3.3. Results of integrating deep leaning system with Chi-square  

Add Chi-square for enhanced, variance-focused feature selection to increase suggested integrated 

deep learning models' accuracy, precision, recall, and F1-score to 96%. This highlights the utility of 

Chi-square to isolate the most diagnostically relevant imaging biomarkers. Table 8 presents the 

performance of the integrating deep leaning system with Chi-square.  

Table 8. Results of the integrating model with Chi-square. 

Class Precision % Recall % F1-Score % Support 

Control  96.2 94.1 95.3 1504 

ADHD 95.0 97.2 96.4 1881 

Accuracy 96.1 

Wighted Average 96.1 96.1 96.3 3385 
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The integrating deep leaning model decisively surpassed the across all diagnostic metrics, 

indicating greater proficiency for extracting discriminative neuroimaging patterns. Coupling 

integrating deep leaning system with Chi-square feature selection further bolsters detection accuracy. 

These results clearly demonstrate the viability of deep neural networks for enhancing ADHD diagnosis 

when combined with robust feature engineering. Figure 13 displays performance of Chi-square with 

integrating deep leaning model. 

To assess the efficacy of the proposed algorithms, the researchers chose to use the confusion 

matrix, which is a widely utilized metric for evaluating classification tasks. The deep learning model 

confusion matrix is shown in Figure 14. 

To have a deeper understanding of the classification efficacy of the proposed integrating deep 

leaning system, it is essential to examine its performance when trained and tested using PCA and Chi-

square methodologies. The proposed integrating deep learning system model, when used with Chi-

square, accurately identified 1395 participants as control and 1804 participants as ADHD. However, 

when integrating deep learning with PCA, 77 patients were misclassified. On the other hand, the 

integrating deep learning model with Chi-square classified 1413 participants as control and 1823 as 

ADHD, with 58 misclassifications. 

 

Figure 13. Training and testing perfomnce of the integrating system with Chi-square: (a) 

accuracy and (b) loss. 

 

Figure 14. Integrated deep learning model confusion matrix: (a) CNNs with PCA and (b) 

CNNs with Chi-square. 
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4. Discussions 

We presented an integrating deep leaning model for automated EEG-based detection of ADHD, 

achieving new, and state-of-the-art accuracy through optimized data preprocessing and feature 

engineering. The developed SVM model attained 94.86% accuracy on the ADHD dataset when 

combined with PCA for feature selection, as presented in Table 9. This surpassed prior works, 

including Alim et al. (2023) [49], who reached 93.2% accuracy using a Gaussian SVM model without 

specialized feature engineering. 

The developed integrating deep leaning model, coupled with Chi-square and PCA for enhanced 

feature screening, achieved comparable state-of-the-art accuracy (95%), outperforming previous deep-

learning techniques, as presented in Table 9. This includes the graph neural network proposed by 

Ekhlasi et al. (2022) [50], which obtained 91.2% and 90% accuracy in theta and delta EEG bands 

without inputs tailored for ADHD detection. 

These gains highlight the efficacy of the data preprocessing pipeline and custom feature selection 

techniques for extracting the most discriminative biomarkers from complex, high-dimensional EEG 

data. The two-stage PCA and Chi-square feature screening enabled the SVM and integrating deep 

leaning model to better capture predictive ADHD patterns for significant performance improvements 

over conventional approaches. Additionally, proactive balancing of the training data addressed class 

imbalance, further boosting the model learning of salient ADHD characteristics. The work’s 

specialized data wrangling and feature engineering optimizations were critical to unlocking the full 

diagnostic potential of machine and deep learning for EEG-based ADHD detection. 

Figure 15 displays a ROC curve of the integrating model with feature selection of PCA and Chi-

square. The performance of a classification model is better represented by the ROC-AUC measure. 

Different machine learning and deep learning algorithms may successfully identify and diagnose 

ADHD, as shown by the ROC-AUC. The classifier model's capacity for diagnosis is gauged by the 

ROC-AUC score. The CNNs with PCA and Chi-square scored AUC=99%. Figure 16 presents a 

comparison of the developed integrating deep leaning model with existing ADHD AI models 

developed by other researchers [52,53]. 

Table 9. Performance of proposed ADHD system using feature selection approaches. 

Feature Selection 

approaches 
All Model Accuracy% Sensitivity% Specificity% 

AUC 

% 
F1-Score% 

PCA 

Gaussian Naive 

Bayes 
71.7 81.4 59.6 76.2 78.8 

Stacking Classifier 83.3 87.4 78.1 85.3 90.6 

Integrating model 94.0 95.0 92.0 99.0 95.0 

SVM 94.9 96.3 93.0 95.4 98.7 

Chi-Square with 

PCA 

Gaussian Naive 

Bayes 
71.8 81.6 59.5 76.3 78.1 

Stacking Classifier 85.6 88.5 81.8 87.2 93.4 

SVM 92.8 94.3 91.0 93.6 97.8 

Integrating model 95.0 96.0 93.0 99.0 96.0 
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Figure 15. ROC of the integrating deep leaning model: (a) PCA and (b) Chi-square. 

 

Figure 16. Comparisons of the developed integrating deep leaning model with exsisting 

ADHD models. 

5. Conclusions 

We present a machine-learning and deep-learning framework for automated discrimination 

between ADHD and healthy children using EEG. The framework has many key components, including 

preprocessing, feature extraction, feature selection, and classification. The developed models achieve 

cutting-edge accuracy, highlighting the power of optimized machine-learning pipelines to improve 

ADHD diagnosis in comparison to traditional approaches. In the ADHD-EEG dataset, the SVM 

approach combined with PCA feature selection achieved 94.86% accuracy, significantly 

outperforming earlier machine-learning models. In addition, the proposed integrated deep leaning 

model achieves a high accuracy of 95% when combined with Chi-square. 

These findings emphasize the significance of optimization feature and data wrangling to extract 

the most diagnostically useful biomarkers from complex EEG data. Strong discrimination between 

ADHD and typical neurological patterns is made possible by specialized preprocessing, class 

balancing, and Chi-square with PCA-based feature selection. 
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This work highlights the potential of EEG and machine learning as valuable tools for aiding 

clinical ADHD evaluations. The optimized models presented in this study have the potential to provide 

reliable supplementary support for diagnosis, especially in challenging cases. Further validation across 

diverse patient cohorts would be beneficial. 

Ultimately, the utilization of these models could enable earlier and more targeted to enhance the 

performance of individuals with ADHD. The framework developed in this study lays the foundation 

for future translational initiatives aiming to maximize the diagnostic utility of machine learning and 

neurophysiological data. 
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